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Abstract

The classical St. Venant problems (tension, bending and flexure) for isotropic elastic prismatic bars with the elastic
moduli varying across the cross-section are examined. Inequalities relating the appropriate effective overall Young’s
modulus to averages of the actual moduli are derived. The strain energy density for a composite with N elastic phases is
examined, and it is found that the strain energy density and thus the elastic moduli are convex functions of the volume
fractions. This result is then used to show that, in simple tension, the effective Young’s modulus is a minimum for the
homogeneous distribution of the phases. It is also shown that, in bending and flexure, the effective Young’s modulus
can be increased by concentrating the elastic components with the greater Young’s modulus further from the axis of
bending. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The concept of functionally graded materials (FGMs), i.e. composites with smoothly varying constit-
utive properties, was first suggested by Niino and coworkers at the National Aerospace Laboratory in
Japan (Koizumi, 1992; Niino et al., 1987). The original idea was to manufacture super-heat-resistant
components for use in the engines and airframe of a supersonic plane, combining the heat resistance of
ceramics with the structural properties of metals, an optimal non-homogeneous distribution of the second
phase ceramic material was to be employed in this context. The important difference between design with
FGMs and conventional materials is that in FGMs, the designer can change the constitutive moduli in the
manufacturing in order to optimize whatever function the part is required to do. In order to obtain a
theoretical framework, from which FGM structures could be analyzed and designed, advances in two areas
are required: (1) The relationship between the microstructure and the macroscopic behavior and (2) the
analysis of non-homogeneous graded structures. The first is an extremely active area of research and there
are many competing theories in the literature (Benveniste, 1987; Christensen, 1990; Ferrari, 1994). On the
second issue, there had been relatively little investigation until recently. With the advent of FGMs though
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there has been a renewed interest in inhomogeneous elasticity. For example, Erdogan and coworkers have
analyzed the various problems associated with cracks in inhomogeneous bodies (Delale and Erdogan, 1988;
Erdogan and Ozturk, 1992; Erdogan, 1995). Ferrari has considered some basic elastic and thermoelastic
solutions, (Ferrari, 1992; Lutz and Ferrari, 1993; Rooney and Ferrari, 1995). Other authors have ap-
proached the problem by considering representative volume elements that are themselves graded in some
sense (Aboudi et al., 1995; Zuiker and Dvorak, 1994,; Reiter et al., 1997) and there have been studies of
microstructural optimization (Nadeau and Ferrari, 1998).

In the context of homogeneous elasticity, the problems associated with St. Venant’s name, the defor-
mation of cylinders by forces applied at their ends, has a long history (Casey and Kaplan, 1997), but the
inhomogeneous St. Venant problems were first considered in the early 1960s. The torsion problem was
formulated in terms of a single stress function by Ely and Zienkiewicz (1960). As in the homogeneous
problem, the solution depends only on the shear modulus. The solution for flexure by a transverse load, for
cylinders with a constant Poisson’s ratio, was investigated by Schile (1962) and Rooney and Ferrari (1995).
The general flexure problem, for a non-constant Poisson’s ratio, was considered by Reissner (1964), who
pointed out that St. Venant’s original assumption, that 7., = 1., = 7,, = 0, is not compatible with the ex-
istence of displacements. The flexure problem in general involves auxiliary bending and torsion compo-
nents. This feature of flexure was noted by Mushkhelishvili (1963) in his consideration of the flexure of
compound bars with differing Poisson’s ratios. Schile and Sierakowski (1965) reduced the compatibility
equations involving the six Beltrami functions to two independent stress functions. This representation was
then applied by Rooney and Ferrari (1999) to the St. Venant problems of circular cylinders.

In this article, lower bounds on the effective moduli in terms of averages of the elastic moduli are derived.
Then, it is shown, in the context of Hill’s concept of representative volume elements, that the strain energy
density and thus the elastic moduli must be convex functions of the volume fractions. These two results are
then used to prove, for cylinders with graded cross-sections, that the homogeneous distribution gives a
minimum for the effective Young’s modulus and that in bending and flexure that concentrating the phases
with larger Young’s moduli away from the axis of bending leads to an effective Young’s modulus greater
than in the homogeneous case.

2. Tension, bending and flexure of a cylinder

Consider an isotropic elastic cylinder of a constant cross-section  under the action of forces acting on
the ends. Introduce a Cartesian coordinate system with the z axis parallel to the generators of the cylinder,
and assume the elastic moduli depend on x and y only.

Assume that the stress tensor can be written in the form,

v =1(x,) + 2t (x,») (1)
with 1) = ¢() = 0.
The constitutive equations give the strain in the form,
e=e”(x,y) +ze"(x,y) (2)

with el) = ell) = 0.
Choose the following stress function representation,

o*P P P

Txx = A5 Txy:__7 Tyy:—7 (3)
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with @ = & (x,y) + 20V (x,y) , &= Z(x,y), and f an arbitrary function of y. The six compatibility

equations reduce to

0%e.. . 0.
2 02 xdy

E 6& B Oey.\ g ey, B Oe,,
ax\ox dy ) oz\dy ox )’
0 (B Bec) O (O Oey
dy\ox oy ) oz \ oy )’
azexy B Gzew L e,

xdy a2 02

Eq. (5) implies
e = Ao+ Box + Coy +z(41 + Bix + Ciy)

2

with Ay, By, Cy, 41, By, C; arbitrary constants. Substituting this into the constitutive equations leads to

T =2u(l +v)e,, + W2,

where p, v are the shear modulus and Poisson’s ratio, respectively. Egs. (6) and (7) become
1
\& {—V(V(P“))} - V(2vezz + 3v2¢<1>) =V x ((k),
It It
where

v (Yyz)_ O (L [ > g(@)
=V <MV“> ay<u/1”dx tola )

The other compatibility Eq. (8) leads to
1
V. (V- [;V(V(D)D - v2<%v2<p> = V2(2ve..).

The condition that the lateral surface be free of traction reduces to
d /0 d /0
—_— B = — _ = Q
ds(@x) ds(@y) 0 on?dQ,

d= X dy
= M dyx — 'l
dS |:/ Tzz d‘x f (y):l dS N

So, if Q is simply connected, without loss of generality, let
®=Vd=0 ondQ.

2.1. Simple tension

(5)

©)

(10)

For simple tension, the longitudinal strain e.. is constant and the stress functions must be of the form,

e, = A(), b= A0¢1(x,y), Z=0.
On the ends, the stress fields must satisfy

(17)
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/tdA:Tk, /rxtdA:0, (18)
Q Q

where t is the traction vector at the end of the cylinder. Then, the effective Young’s modulus for the in-
homogeneous cylinder is given by

T l/(zu(1+v)+vv2<p1)d,4. (19)

E = =
T e d 4

The only non-trivial compatibility equation in this case is Eq. (13), and so, @, satisfies
1
V. (V~ { V(V@l)]) - v2<vv2<p1) = V2(2v), (20)
I I
and 4 is the area of Q. The effective Young’s modulus in simple tension will be given by Eq. (19)
1
ET:—/(E+VV2¢1)dA, (21)
4 Jo
where E and v are Young’s modulus and Poisson’s ratio. Multiplying Eq. (20) by &, and integrating over Q

gives
/Q<I>1V2(2v)dA :/Q{V- <V~ BV(V(I)I)D —vz(ivzél)}@m. (22)

The use of Green’s identities and the boundary conditions leads to

1
/2vv2q5] dd = / {—tr[(V(V@l))z} —3(v2<151)2}d14. (23)
Q o LH 2
Let
V(V®) =D +1v?¢;1, where trD =0 and 1 is the identity tensor. (24)
Then,
/2vV2<I>1dA :/{ltr[Dz] +i(1 —2v)(V2<I>1)2}dA. (25)
Q o LM 2u

The right-hand side of this equation is positive, so from Eq. (21), we can deduce

Er> L /EdA. (26)
4 Jo

2.2. Pure bending

For bending by a moment of magnitude M in the x direction, we assume the longitudinal strain and the
stress functions in the form,

e, = Box, @ =ByP(x,y), E=0. (27)
The stress field has to satisfy
/tdA:O, /rxtdA:Mi. (28)
Q Q

By analogy with the homogeneous bending problem, we can define an effective Young’s modulus in
bending by
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Eg=—-=— / (2u(1 + v)x + vW>d,) xd4, (29)

M 1
Bol, 1,

where @, satisfies

1
V. <V- [HV(VQ)D - vz(;v2q52> = V2(2w), (30)
gz/fm. (31)
Q
In a manner analogous to the previous section, it can be proved that
/vVZ@Zdi >0, (32)
Q
and hence,
1
Ep > — /Exsz. (33)

2.3. Flexure by a load along a principal axis

For flexure by a force of magnitude P in the x direction, assume

e.. = Bixz, & = zB | P5(x, y), E£0. (34)
The stress field must satisfy the end conditions,
/tdA:Pi, /rxtdA:O. (35)
Q Q
The end conditions imply that
P:/}Qmm. (36)
Q
Thus, we can define the effective Young’s modulus for flexure as
P 1
EF = = — / (2#(1 +v)x+vv2¢3)di7 (37)
Blly [y Q

where @5 satifies Eq. (30) and J, is given by Eq. (31). Comparing Eqs. (29) and (37) leads to the conclusion
that

Eg = Er. (38)

3. Strain energy density and convexity

Consider a volume 7" of a body consisting of N different elastic materials perfectly bonded together. Let
¥"; be the volume of the ith phase, then define the volume fraction of the ith phase, ¢; by
o vol(77;)
" ovol(v)

(39)
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Initially, assume that the phases are homogeneously distributed. The concept of a representative volume
element (RVE) was introduced by Hill (1963), he defined an RVE, to be a portion of the material that is
structurally typical of the whole mixture on average and contains a sufficient number of inclusions so that
the apparent overall moduli are independent of the surface values of the traction and displacement. Let V
be a RVE, and let it be subjected to surface displacements of the kind that would produce a uniform strain
in a homogeneous material. This is also the average strain in the inhomogeneous mixture. Let the dis-
placement be

u=EyX on 0V, (40)

where X is the position vector and E is the constant average strain tensor. Let ¥; be the volume of the ith
phase contained in V. The strain energy density is then

U(Ci) = Voll(V) ; /V, %Ei : (CU)Ei)dVa (41)

where C% is the elasticity tensor for the ith phase. The various effective moduli can then be calculated by
suitable choices of E; from

U(e;) = Eq - (C(e;)Eo). (42)

If ¥ C V, then V will be an RVE and the strain energy density calculated using ¥ should be the same as
using V, i.e.,

N
Ule;) = V011(I7) ; /V %E,. (CYE;)dv, (43)
where
=157 el ()
Equating the two expressions gives
,ZNI: /V JE, - (CUR) ¥ = gg; XN; /V JE, - (CUE)dy. (45)
Consider
6 & 1 - l—a & 1. -
V() + (1= 2)U(é) = i /V 2B (COR)AV 400> /V JE(COR)aV. (46)
Using Eq. (45), this becomes
1 X 1 . X ~
aU(&) + (1 — a)U(é) = 5ol(7) ; /V SE (CYE)dV + ) /V ~E,;- (CYE)dV |, (47)
where
vol(V*) = avol(¥}); vol(V*) = (1 — a) vol(¥). (48)

This can then be expressed in the form,
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alU(&) + (1 —a)U(&) Vol [Z /V dV} (49)
where

Vr=Vrur, E,=E, on V7 E,=E, on V" (50)
Let

¢ =oac+ (1 —a)é, (51)
then

vol(V*) = ¢;vol(V). (52)

If E; is the actual strain in the ith phase corresponding to the given loading with volume fractions ¢;, then
the theorem of minimum potential energy, Gurtin (1984) gives

N N
Z / E; - (CYE)dV > Z / E - (CVE)dr. (53)
-1 S -1 S

So,

= U(e). (54)

aU()+ (1 —a)U((é) = Voll(V) llz; /V, %Ei - (CYE,)dv

This means that the strain energy density is a convex function of the volume fractions.
If the volume fractions are now allowed to vary with position, define an RVE at r to be a volume ¥; that
is structurally typical of the material around r with the following properties:

/Vrr’dV’ =r, /Vrc,-(r’)dV/ = ¢(r). (55)

The strain energy density is then

Uleitr)] = vol;m 2 / E - (CYE)dV, (56)
where
vol(V) = ¢;(r) vol(W;). (57)

An argument similar to the earlier derivation establishes that in this case too, the strain energy density and
thus the effective moduli are convex functions of the volume fractions.

4. Multiphase composites

Consider a composite cylinder, with a constant cross-section Q, made up of N different elastic materials
bonded together perfectly, under the action of end loads. Introduce a cartesian coordinate system with the z
axis parallel to the generators of the cylinder. If ¢; is the volume fraction of the ith phase, assume that
¢; = ¢;(x,y). If the overall volume fraction of the ith phase is ¢!, then

/ ei(x,y)dd = 04, (58)
Q
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where A is the area of Q. Let E(c;) be Young’s modulus of the composite and let

Ey = E("). (59)
Consider the difference between the effective Young’s modulus in tension given by Eq. (19) and E,,
1
Er—Ey> — / (E — Ey)d4 (60)
4 Jo

using Eq. (26). But from the previous section, E is a convex function of the ¢;, which implies (Rockafellar,
1970)

N
E-E 2 ) () (abey) - ). (61)
— Oci
Therefore, Eq. (60) becomes
I - 0E, ©
FoBo> 30 ) [ (atr) =) at =0, (62)

So the homogeneous distribution of the elastic phases renders the effective Young’s modulus in simple
tension a minimum.

Now, consider bending of a cylinder made up of two phases. For definiteness, let the volume fraction of
the phase with the greater Young’s modulus be ¢(x,y). Then, the volume concentration of the second phase
is 1—c and FE is a convex function of ¢. Then, in view of Eq. (33), the difference between the effective Young’
modulus and E, satisfies

1
@—&;—/f@—%ﬂ4 (63)
Iy Q

From a remark of Hill (1963, p. 370), as the first phase has the greater Young’s modulus, it follows that E is
an increasing function of ¢. Then,

1
Bu—E0> L Ele) [ Rletny) - a)dd, (64)
y Q

where ¢ is the overall volume fraction of the first phase. If the first phase is concentrated away from the y
axis, then

/xz(c(x,y) —¢p)d4 = 0. (65)
Q
Using the fact that F is an increasing function of ¢, then it leads to

Ep —Ey = 0. (66)

Thus, by varying the concentration of the phases, the effective modulus can be improved over the homo-
geneous situation by concentrating the phase with the greater Young’s modulus farther from the y axis.

5. Conclusions
The tension, bending and flexure of cylinders with functionally graded cross-sections are examined. It

has been demonstrated that, as the elastic moduli are convex functions of the volume fractions, the effective
Young’s modulus in simple tension achieves its minimum for the homogeneous distribution of the phases.
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Further, by concentrating the phases with larger Young’s moduli farther from the axis of bending the
effective Young’s modulus will be greater than the homogeneous modulus. In other words, if a structural
member is required to be just in tension, any grading of the phases will result in an improvement in the
performance. If the component is required to bend or flex, then concentrating the phases with larger
Young’s moduli away from the axis of bending will lead to less deformation for a given bending moment.
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