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Abstract

The classical St. Venant problems (tension, bending and ¯exure) for isotropic elastic prismatic bars with the elastic

moduli varying across the cross-section are examined. Inequalities relating the appropriate e�ective overall Young's

modulus to averages of the actual moduli are derived. The strain energy density for a composite with N elastic phases is

examined, and it is found that the strain energy density and thus the elastic moduli are convex functions of the volume

fractions. This result is then used to show that, in simple tension, the e�ective Young's modulus is a minimum for the

homogeneous distribution of the phases. It is also shown that, in bending and ¯exure, the e�ective Young's modulus

can be increased by concentrating the elastic components with the greater Young's modulus further from the axis of

bending. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The concept of functionally graded materials (FGMs), i.e. composites with smoothly varying constit-
utive properties, was ®rst suggested by Niino and coworkers at the National Aerospace Laboratory in
Japan (Koizumi, 1992; Niino et al., 1987). The original idea was to manufacture super-heat-resistant
components for use in the engines and airframe of a supersonic plane, combining the heat resistance of
ceramics with the structural properties of metals, an optimal non-homogeneous distribution of the second
phase ceramic material was to be employed in this context. The important di�erence between design with
FGMs and conventional materials is that in FGMs, the designer can change the constitutive moduli in the
manufacturing in order to optimize whatever function the part is required to do. In order to obtain a
theoretical framework, from which FGM structures could be analyzed and designed, advances in two areas
are required: (1) The relationship between the microstructure and the macroscopic behavior and (2) the
analysis of non-homogeneous graded structures. The ®rst is an extremely active area of research and there
are many competing theories in the literature (Benveniste, 1987; Christensen, 1990; Ferrari, 1994). On the
second issue, there had been relatively little investigation until recently. With the advent of FGMs though
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there has been a renewed interest in inhomogeneous elasticity. For example, Erdogan and coworkers have
analyzed the various problems associated with cracks in inhomogeneous bodies (Delale and Erdogan, 1988;
Erdogan and Ozturk, 1992; Erdogan, 1995). Ferrari has considered some basic elastic and thermoelastic
solutions, (Ferrari, 1992; Lutz and Ferrari, 1993; Rooney and Ferrari, 1995). Other authors have ap-
proached the problem by considering representative volume elements that are themselves graded in some
sense (Aboudi et al., 1995; Zuiker and Dvorak, 1994,; Reiter et al., 1997) and there have been studies of
microstructural optimization (Nadeau and Ferrari, 1998).

In the context of homogeneous elasticity, the problems associated with St. Venant's name, the defor-
mation of cylinders by forces applied at their ends, has a long history (Casey and Kaplan, 1997), but the
inhomogeneous St. Venant problems were ®rst considered in the early 1960s. The torsion problem was
formulated in terms of a single stress function by Ely and Zienkiewicz (1960). As in the homogeneous
problem, the solution depends only on the shear modulus. The solution for ¯exure by a transverse load, for
cylinders with a constant Poisson's ratio, was investigated by Schile (1962) and Rooney and Ferrari (1995).
The general ¯exure problem, for a non-constant Poisson's ratio, was considered by Reissner (1964), who
pointed out that St. Venant's original assumption, that sxx � sxy � syy � 0, is not compatible with the ex-
istence of displacements. The ¯exure problem in general involves auxiliary bending and torsion compo-
nents. This feature of ¯exure was noted by Mushkhelishvili (1963) in his consideration of the ¯exure of
compound bars with di�ering Poisson's ratios. Schile and Sierakowski (1965) reduced the compatibility
equations involving the six Beltrami functions to two independent stress functions. This representation was
then applied by Rooney and Ferrari (1999) to the St. Venant problems of circular cylinders.

In this article, lower bounds on the e�ective moduli in terms of averages of the elastic moduli are derived.
Then, it is shown, in the context of Hill's concept of representative volume elements, that the strain energy
density and thus the elastic moduli must be convex functions of the volume fractions. These two results are
then used to prove, for cylinders with graded cross-sections, that the homogeneous distribution gives a
minimum for the e�ective Young's modulus and that in bending and ¯exure that concentrating the phases
with larger Young's moduli away from the axis of bending leads to an e�ective Young's modulus greater
than in the homogeneous case.

2. Tension, bending and ¯exure of a cylinder

Consider an isotropic elastic cylinder of a constant cross-section X under the action of forces acting on
the ends. Introduce a Cartesian coordinate system with the z axis parallel to the generators of the cylinder,
and assume the elastic moduli depend on x and y only.

Assume that the stress tensor can be written in the form,

s � s�0��x; y� � zs�1��x; y� �1�
with s�1�yz � s�1�xz � 0.

The constitutive equations give the strain in the form,

e � e�0��x; y� � ze�1��x; y� �2�
with e�1�yz � e�1�xz � 0.

Choose the following stress function representation,

sxx � o2U
oy2

; sxy � ÿ o2U
oyox

; syy � o2U
ox2

; �3�

syz � oN
ox
; sxz � oN

oy
ÿ
Z

s�1�zz dx� f �y� �4�
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with U � U�0��x; y� � zU�1��x; y� , N � N�x; y�, and f an arbitrary function of y. The six compatibility
equations reduce to

o2ezz

ox2
� o2ezz

oy2
� o2ezz

oxoy
� 0; �5�

o
ox

oeyz

ox

�
ÿ oexz

oy

�
� o

oz
oexx

oy

�
ÿ oexy

ox

�
; �6�

o
oy

oeyz

ox

�
ÿ oexz

oy

�
� ÿ o

oz
oeyy

ox

�
ÿ oexy

oy

�
; �7�

2
o2exy

oxoy
� o2eyy

ox2
� o2exx

oy2
: �8�

Eq. (5) implies

ezz � A0 � B0x� C0y � z A1� � B1x� C1y� �9�
with A0;B0;C0;A1;B1;C1 arbitrary constants. Substituting this into the constitutive equations leads to

szz � 2l�1� m�ezz � mr2U; �10�
where l; m are the shear modulus and Poisson's ratio, respectively. Eqs. (6) and (7) become

$ � 1

l
$ $U�1�
ÿ �� �

ÿ $ 2mezz

�
� m

l
r2U�1�

�
� $� �fk�; �11�

where

f � $ � 1

l
$N

� �
ÿ o

oy
1

l

Z
s�1�zz dx

� �
� o

oy
f �y�
l

� �
: �12�

The other compatibility Eq. (8) leads to

$ � $ � 1

l
$�$U�

� �� �
ÿr2 m

l
r2U

� �
� r2�2mezz�: �13�

The condition that the lateral surface be free of traction reduces to

d

ds
oU
ox

� �
� d

ds
oU
oy

� �
� 0 on oX; �14�

dN
ds
�

Z
s�1�zz dx

�
ÿ f �y�

�
dy
ds
: �15�

So, if X is simply connected, without loss of generality, let

U � $U � 0 on oX: �16�

2.1. Simple tension

For simple tension, the longitudinal strain ezz is constant and the stress functions must be of the form,

ezz � A0; U � A0U1�x; y�; N � 0: �17�
On the ends, the stress ®elds must satisfy

F. Rooney, M. Ferrari / International Journal of Solids and Structures 38 (2001) 413±421 415



Z
X

tdA � T k;

Z
X

r� tdA � 0; �18�

where t is the traction vector at the end of the cylinder. Then, the e�ective Young's modulus for the in-
homogeneous cylinder is given by

ET � T
ezzA
� 1

A

Z
X

2l�1ÿ � m� � mr2U1

�
dA: �19�

The only non-trivial compatibility equation in this case is Eq. (13), and so, U1 satis®es

$ � $ � 1

l
$�$U1�

� �� �
ÿr2 m

l
r2U1

� �
� r2�2m�; �20�

and A is the area of X. The e�ective Young's modulus in simple tension will be given by Eq. (19)

ET � 1

A

Z
X

E
ÿ � mr2U1

�
dA; �21�

where E and m are Young's modulus and Poisson's ratio. Multiplying Eq. (20) by U1 and integrating over X
gives Z

X
U1r2�2m�dA �

Z
X

$ � $ � 1

l
$�$U1�

� �� ��
ÿr2 m

l
r2U1

� ��
U1 dA: �22�

The use of Green's identities and the boundary conditions leads toZ
X

2mr2U1 dA �
Z

X

1

l
tr $�$U1�� �2
h i�

ÿ m
l
r2U1

ÿ �2

�
dA: �23�

Let

$ $U1� � � D� 1
2
r2U11; where trD � 0 and 1 is the identity tensor: �24�

Then,Z
X

2mr2U1 dA �
Z

X

1

l
tr D2
� ��

� 1

2l
�1ÿ 2m� r2U1

ÿ �2

�
dA: �25�

The right-hand side of this equation is positive, so from Eq. (21), we can deduce

ET >
1

A

Z
X

E dA: �26�

2.2. Pure bending

For bending by a moment of magnitude M in the x direction, we assume the longitudinal strain and the
stress functions in the form,

ezz � B0x; U � B0U2�x; y�; N � 0: �27�
The stress ®eld has to satisfyZ

X
tdA � 0;

Z
X

r� tdA � M i: �28�

By analogy with the homogeneous bending problem, we can de®ne an e�ective Young's modulus in
bending by
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EB � M
B0Iy
� 1

Iy

Z
X

2l�1ÿ � m�x� mr2U2

�
xdA; �29�

where U2 satis®es

$ � $ � 1

l
r�rU2�

� �� �
ÿr2 m

l
r2U2

� �
� r2�2mx�; �30�

Iy �
Z

X
x2 dA: �31�

In a manner analogous to the previous section, it can be proved thatZ
X

mr2U2 xdA > 0; �32�

and hence,

EB >
1

Iy

Z
X

E x2 dA: �33�

2.3. Flexure by a load along a principal axis

For ¯exure by a force of magnitude P in the x direction, assume

ezz � B1xz; U � zB1U3�x; y�; N 6� 0: �34�
The stress ®eld must satisfy the end conditions,Z

X
tdA � P i;

Z
X

r� tdA � 0: �35�

The end conditions imply that

P �
Z

X
s�1�zz xdA: �36�

Thus, we can de®ne the e�ective Young's modulus for ¯exure as

EF � P
B1Iy
� 1

Iy

Z
X

2l�1ÿ � m�x� mr2U3

�
xdA; �37�

where U3 sati®es Eq. (30) and Iy is given by Eq. (31). Comparing Eqs. (29) and (37) leads to the conclusion
that

EB � EF: �38�

3. Strain energy density and convexity

Consider a volume V of a body consisting of N di�erent elastic materials perfectly bonded together. Let
Vi be the volume of the ith phase, then de®ne the volume fraction of the ith phase, ci by

ci � vol�Vi�
vol�V� : �39�
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Initially, assume that the phases are homogeneously distributed. The concept of a representative volume
element (RVE) was introduced by Hill (1963), he de®ned an RVE, to be a portion of the material that is
structurally typical of the whole mixture on average and contains a su�cient number of inclusions so that
the apparent overall moduli are independent of the surface values of the traction and displacement. Let V
be a RVE, and let it be subjected to surface displacements of the kind that would produce a uniform strain
in a homogeneous material. This is also the average strain in the inhomogeneous mixture. Let the dis-
placement be

u � E0 X on oV ; �40�
where X is the position vector and E0 is the constant average strain tensor. Let Vi be the volume of the ith
phase contained in V. The strain energy density is then

U�ci� � 1

vol�V �
XN

i�1

Z
Vi

1

2
Ei � �C�i�Ei�dV ; �41�

where C�i� is the elasticity tensor for the ith phase. The various e�ective moduli can then be calculated by
suitable choices of E0 from

U�ci� � 1
2
E0 � �C�ci�E0�: �42�

If �V � V , then �V will be an RVE and the strain energy density calculated using �V should be the same as
using V, i.e.,

U�ci� � 1

vol� �V �
XN

i�1

Z
�Vi

1

2
Ei � �C�i�Ei�dV ; �43�

where

ci � vol� �Vi�
vol� �V � �

vol�Vi�
vol�V � : �44�

Equating the two expressions givesXN

i�1

Z
�Vi

1

2
Ei � �C�i�Ei�dV � vol� �V �

vol�V �
XN

i�1

Z
Vi

1

2
Ei � �C�i�Ei�dV : �45�

Consider

aU�~ci� � �1ÿ a�U�ĉi� � a
vol�V �

XN

i�1

Z
Vi

1

2
~Ei � �C�i�~Ei�dV � 1ÿ a

vol�V �
XN

i�1

Z
Vi

1

2
Êi � �C�i�Êi�dV : �46�

Using Eq. (45), this becomes

aU�~ci� � �1ÿ a�U�ĉi� � 1

vol�V �
XN

i�1

Z
~V a
i

1

2
~Ei � �C�i�~Ei�dV

"
�
XN

i�1

Z
V̂ a

i

1

2
Êi � �C�i�Êi�dV

#
; �47�

where

vol� ~V a
i � � avol�Vi�; vol�V̂ a

i � � �1ÿ a�vol�Vi�: �48�
This can then be expressed in the form,
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aU�~ci� � �1ÿ a�U�ĉi� � 1

vol�V �
XN

i�1

Z
�V a
i

1

2
�Ei � �C�i��Ei�dV

" #
; �49�

where

�V a
i � ~V a

i [ V̂ a
i ;

�Ei � ~Ei on ~V a
i ;

�Ei � Êi on V̂ a
i : �50�

Let

�ci � a~ci � �1ÿ a�ĉi; �51�
then

vol� �V a
i � � �ci vol�V �: �52�

If �Ei is the actual strain in the ith phase corresponding to the given loading with volume fractions �ci, then
the theorem of minimum potential energy, Gurtin (1984) givesXN

i�1

Z
�V a
i

�Ei � �C�i��Ei�dV P
XN

i�1

Z
�V a
i

�Ei � �C�i��Ei�dV : �53�

So,

aU�~ci� � �1ÿ a�U�ĉi�P 1

vol�V �
XN

i�1

Z
�V a
i

1

2
�Ei � �C�i��Ei�dV

" #
� U��ci�: �54�

This means that the strain energy density is a convex function of the volume fractions.
If the volume fractions are now allowed to vary with position, de®ne an RVE at r to be a volume Vr that

is structurally typical of the material around r with the following properties:Z
Vr

r0 dV 0 � r;

Z
Vr

ci�r0�dV 0 � ci�r�: �55�

The strain energy density is then

U �ci�r�� � 1

vol�Vr�
XN

i�1

Z
V i

r

Ei � �C�i�Ei�dV ; �56�

where

vol�V i
r � � ci�r�vol�Vr�: �57�

An argument similar to the earlier derivation establishes that in this case too, the strain energy density and
thus the e�ective moduli are convex functions of the volume fractions.

4. Multiphase composites

Consider a composite cylinder, with a constant cross-section X, made up of N di�erent elastic materials
bonded together perfectly, under the action of end loads. Introduce a cartesian coordinate system with the z
axis parallel to the generators of the cylinder. If ci is the volume fraction of the ith phase, assume that
ci � ci�x; y�. If the overall volume fraction of the ith phase is c�0�i , thenZ

X
ci�x; y�dA � c�0�i A; �58�

F. Rooney, M. Ferrari / International Journal of Solids and Structures 38 (2001) 413±421 419



where A is the area of X. Let E�ci� be Young's modulus of the composite and let

E0 � E�c�0�i �: �59�
Consider the di�erence between the e�ective Young's modulus in tension given by Eq. (19) and E0,

ET ÿ E0 P
1

A

Z
X

E� ÿ E0�dA �60�

using Eq. (26). But from the previous section, E is a convex function of the ci, which implies (Rockafellar,
1970)

E ÿ E0 P
XN

i�1

oE
oci
�c�0�i � ci�x; y�

�
ÿ c�0�i

�
: �61�

Therefore, Eq. (60) becomes

ET ÿ E0 P
1

A

XN

i�1

oE
oci
�c�0�i �

Z
X

ci�x; y�
�

ÿ c�0�i

�
dA � 0: �62�

So the homogeneous distribution of the elastic phases renders the e�ective Young's modulus in simple
tension a minimum.

Now, consider bending of a cylinder made up of two phases. For de®niteness, let the volume fraction of
the phase with the greater Young's modulus be c�x; y�. Then, the volume concentration of the second phase
is 1ÿc and E is a convex function of c. Then, in view of Eq. (33), the di�erence between the e�ective Young'
modulus and E0 satis®es

EB ÿ E0 P
1

Iy

Z
X

x2 E� ÿ E0�dA: �63�

From a remark of Hill (1963, p. 370), as the ®rst phase has the greater Young's modulus, it follows that E is
an increasing function of c. Then,

EB ÿ E0 P
1

Iy
E0�c0�

Z
X

x2 c�x; y�� ÿ c0�dA; �64�

where c0 is the overall volume fraction of the ®rst phase. If the ®rst phase is concentrated away from the y
axis, thenZ

X
x2 c�x; y�� ÿ c0�dA P 0: �65�

Using the fact that E is an increasing function of c, then it leads to

EB ÿ E0 P 0: �66�
Thus, by varying the concentration of the phases, the e�ective modulus can be improved over the homo-
geneous situation by concentrating the phase with the greater Young's modulus farther from the y axis.

5. Conclusions

The tension, bending and ¯exure of cylinders with functionally graded cross-sections are examined. It
has been demonstrated that, as the elastic moduli are convex functions of the volume fractions, the e�ective
Young's modulus in simple tension achieves its minimum for the homogeneous distribution of the phases.
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Further, by concentrating the phases with larger Young's moduli farther from the axis of bending the
e�ective Young's modulus will be greater than the homogeneous modulus. In other words, if a structural
member is required to be just in tension, any grading of the phases will result in an improvement in the
performance. If the component is required to bend or ¯ex, then concentrating the phases with larger
Young's moduli away from the axis of bending will lead to less deformation for a given bending moment.
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